# Vertex Cover of Bipartite Graph 

## Marco Gallotta

## SACO Training Camp 2 2-4 May 2008

## Problem: Declone

- You have a 2D grid with clones at lattice points
- Can destroy all clones in a row or column in a single shot
- Want to determine the minimum number of shots required to destroy all clones


## Vertex Cover

- Vertex Cover: Subset of vertices $S$ such that each edge has at least one endpoint in $S$
- Vertex Cover Problem: Minimise the vertex cover

- Vertex Cover


## Relationship to Declone

- Declone is equivalent to the vertex cover problem



## Problem!

- The minimum vertex cover is NP-complete! :(
- But $N$ goes all the way up to 250,000 ?!


## Observation

- The graph is bipartite - remember what that means?
- König's theorem: In a bipartite graph, the number of edges in maximum matching is equal to the number of vertices in a minimum vertex cover


## Maximum Matching

- A matching is a set of edges $S$ with no two edges in $S$ sharing a common vertex
- A maximum matching maximises the size of $S$

——Matching


## Roundup

- Our graph is bipartite
- Therefore (only in bipartite graphs) our vertex cover problem is equivalent to finding a maximum matching
- So how do we find a maximum bipartite matching?


## Maximum Bipartite Matching

Network flow!

## Huh, How?

- Add a super source $S$ that has an edge of weight 1 to all row vertices
- Add a super sink $T$ that has an edge of weight 1 to all column vertices
- Set the weights of all other edges to infinity



## Final Leg

- Perform Ford-Fulkerson on the above graph
- DFS the residual graph and mark off those you visit (blue in graph below)
- The answer: all rows you cannot visit and all columns you can visit



## TADA!



## TADA!



