#### Vertex Cover of Bipartite Graph

Marco Gallotta

SACO Training Camp 2 2-4 May 2008

### Problem: Declone

- You have a 2D grid with clones at lattice points
- Can destroy all clones in a row or column in a single shot
- Want to determine the minimum number of shots required to destroy all clones

#### Vertex Cover

- Vertex Cover: Subset of vertices S such that each edge has at least one endpoint in S
- Vertex Cover Problem: Minimise the vertex cover



### **Relationship to Declone**

 Declone is equivalent to the vertex cover problem



### Problem!

- The minimum vertex cover is NP-complete! :(
- But N goes all the way up to 250,000?!

### Observation

- The graph is bipartite remember what that means?
- König's theorem: In a bipartite graph, the number of edges in maximum matching is equal to the number of vertices in a minimum vertex cover



## Maximum Matching

- A matching is a set of edges S with no two edges in S sharing a common vertex
- A maximum matching maximises the size of S



## Roundup

- Our graph is bipartite
- Therefore (only in bipartite graphs) our vertex cover problem is equivalent to finding a maximum matching
- So how do we find a maximum bipartite matching?

### **Maximum Bipartite Matching**

Network flow!

## Huh, How?

- Add a super source S that has an edge of weight 1 to all row vertices
- Add a super sink T that has an edge of weight 1 to all column vertices
- Set the weights of all other edges to infinity



# **Final Leg**

- Perform Ford-Fulkerson on the above graph
- DFS the residual graph and mark off those you visit (blue in graph below)
- The answer: all rows you cannot visit and all columns you can visit



#### TADA!



# TADA!



• Why does it work?

